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Abstract Formalization is becoming more common in all
stages of the development of information systems, as a
better understanding of its benefits emerges. Classification
systems are ubiquitous, no more so than in domain model-
ing. The classification pattern that underlies these systems
provides a good case study of the move toward formaliza-
tion in part because it illustrates some of the barriers to
formalization, including the formal complexity of the pat-
tern and the ontological issues surrounding the “one and
the many.” Powersets are a way of characterizing the (com-
plex) formal structure of the classification pattern, and their
formalization has been extensively studied in mathemat-
ics since Cantor’s work in the late nineteenth century. One
can use this formalization to develop a useful benchmark.
There are various communities within information systems
engineering (ISE) that are gradually working toward a for-
malization of the classification pattern. However, for most
of these communities, this work is incomplete, in that they
have not yet arrived at a solution with the expressiveness
of the powerset benchmark. This contrasts with the early
smooth adoption of powerset by other information systems
communities to, for example, formalize relations. One way
of understanding the varying rates of adoption is recogniz-
ing that the different communities have different historical
baggage. Many conceptual modeling communities emerged
from work done on database design, and this creates hur-
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dles to the adoption of the high level of expressiveness of
powersets. Another relevant factor is that these communities
also often feel, particularly in the case of domain modeling,
a responsibility to explain the semantics of whatever formal
structures they adopt. This paper aims to make sense of the
formalization of the classification pattern in ISE and surveys
its history through the literature, starting from the relevant
theoretical works of the mathematical literature and gradu-
ally shifting focus to the ISE literature. The literature survey
follows the evolution of ISE’s understanding of how to for-
malize the classification pattern. The various proposals are
assessed using the classical example of classification; the
Linnaean taxonomy formalized using powersets as a bench-
mark for formal expressiveness. The broad conclusion of
the survey is that (1) the ISE community is currently in the
early stages of the process of understanding how to formalize
the classification pattern, particularly in the requirements for
expressiveness exemplified by powersets, and (2) that there
is an opportunity to intervene and speed up the process of
adoption by clarifying this expressiveness. Given the central
place that the classification pattern has in domain model-
ing, this intervention has the potential to lead to significant
improvements.

Keywords Classification system · Classification ·
Powerset · Powertype · Set theory

1 Introduction

Classification (in the everyday sense) is ubiquitous [28,
36,102]. This should not be surprising; classifications are
one of the major ways we organize things in the world.
Biologists classify our species as Homo sapiens and our
pet dogs as Canis lupus familiaris; governments classify
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us in all sorts of ways. Wherever we need to organize
information of any size, indeed whenever we think, we
start classifying. In “Primitive Classification,” Durkheim
and Mauss [28] argued that the sophistication of the clas-
sification system reflected the sophistication of the culture
using it—more sophisticated cultures used more sophisti-
cated classifications. In “The Order of Things,” Foucault
[36] described how classification systems have evolved over
time.

The history of information shows an obvious correlation
between the amount of information available and the nature
of its classification; as the amount of information grows,
more instances of classification as well as more sophisticated
classification structures emerge (Ong [86]). Furthermore, the
nature of the storage medium plays a role in shaping the kind
of structures that emerge (Olson [82]).

One would expect the emergence of computer sys-
tems to follow this evolutionary pattern. It can already be
seen that computers lead to substantial increases in the
amount of information and how this has led to a need
for better classification systems. Computers, unlike their
paper precursors, are formal systems; this suggests that
one avenue for improvement would be a more formal
structure.

However, there is currently no survey that examines this.
This paper aims to start to fill that gap. It surveys how the
formalization of the classification pattern has emerged and
evolved in information systems engineering (ISE). It briefly
tracks the history of its emergence and builds a picture of the
current status.

This survey identifies a small number of communities cur-
rently working in this area, with different approaches and
with different underlying formalizations. This necessitates
the creation of a framework and benchmark against which to
assess them. A classic example, the Linnaean classification,
is chosen as a benchmark example. A mathematical frame-
work is developed for characterizing the formal structure of
classification, and this is used to expose the formal structure
of the chosen example. This is described in the first part of
the paper.

With this framework andbenchmark in place, the ISE liter-
ature is reviewed revealing a variety of emerging approaches.
Their underlying formalizations are analyzed, benchmarked,
and compared. This exposes a general slow adoption over
time of the formal structures needed for the classification
pattern, as well as different adoption routes and stages in
different communities. The conclusion of this research is
that the way to formalize classification is being explored
by the ISE community, but that this has not yet arrived at
a mature stable mainstream state. The hypothesis is that
both the formal complexity of the pattern and the require-
ment for an explanation of what the formal structures being
proposed represent (a semantic-ontological narrative about

what aspect of reality they are reflecting) contribute to the
slow adoption. This is described in the second part of the
paper.

1.1 Why classification is being formalized now

As a community acquires more information, this creates a
corresponding need to improve its classification systems. For
example, if a community is originally only interested in five
or ten objects in a domain, there is little need for a sophisti-
cated classification system. When this increases to a couple
of hundred, there is need for a simple system. For exam-
ple, Lakoff’s [66] title “Women, Fire andDangerous Things”
refers to one of the four basic categories hard-wired into the
language of a preliterate community. When this increases
to thousands or millions, the need for a more sophisticated
system becomes overwhelming.

Observers of information technology revolutions (such
as Ong [86] and Olson [82]) have noted that these tend to
encourage developments in classification systems, driven in
part by increases in the volume of information. They give
as examples one of the earliest systems of classification, the
Aristotelian categories, which emerged in Ancient Greece as
writing was establishing itself, and the Linnaean classifica-
tion, which emerged as printing established itself.

There seems to be a similar situation now with the com-
puting (information technology) revolution. Many of the
methods of classification used currently were developed for
paper technology, prior to the emergence of computing; how-
ever, the classifications and the data they classify are now
typically stored on computers. Computer storage not only
offers opportunities for increasing the amount of data stored,
it also offers opportunities for structuring the data in ways
that paper technology does not. Computers operate within
more formal structures, so one of the first hurdles facing
the more informal, implicit paper-based classification pat-
terns in their migration to computer systems is formalization.
This then opens the door to opportunities for innovation and
improvement, to deal with the increases in the volume of
data. This paper starts to look within ISE at how the for-
malization of the techniques for classifying has emerged and
developed.

1.2 What is the classification pattern?

The term “classification” has a variety of senses, typically
associated with kinds of classification systems. Our inter-
est is in a pattern that can be discerned at the core of these
classification systems, which underpins its structure, what
we therefore call the “classification pattern.” In our formal
analysis, we highlight this pattern and characterize its struc-
ture. Our focus on this specific pattern is to enable us to
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make clearer comparisons. It is not to dismiss any of the
other senses.

1.3 Separating the concerns

One of the issues faced when starting to build up a picture
of the classification pattern in computing is that there were
several competing concerns. As well as the requirement to
represent the classifications in the domain, there are compet-
ing implementation requirements on the representation that
distort the picture.

To resolve this, the question ofwhat is being represented is
separated from how it is implemented in a particular system.
The survey is only concerned with the first aspect—what
is being represented—independent of any implementation
requirement.

This kind of separation of concerns approach iswell estab-
lished in computing and software engineering. The Object
Management Group’s (OMG) Model-Driven Architecture
(MDA) is a well-known example; in their terms, the focus
here is on the Computational Independent Model (CIM).

It is also important to separate the core of the classification
pattern, whose formal structure can be exemplified by pow-
ersets and subsets, from more general peripheral concerns.
For example, powersets are a mechanism for generating
higher-order sets (types). However, as the formal exposition
below shows, higher-order sets (types) are not sufficient, by
themselves, to characterize the classification pattern. Indeed,
from some perspectives, they are not even necessary, as
illustrated by the communities who have developed clas-
sification pattern characterizations that deliberately exclude
them (as described below).While higher-order types can use-
fully be characterized using a particular notion of powertypes
as powersets, this dependence is not symmetrical. Hence,
while higher-order types may be a natural extension of one
approach to the classification pattern, they are not a core ele-
ment of it and so not a core concern of this paper. They are
nonetheless important, and so we discuss future research into
them in Sect. 8.

1.4 How to assess the formalization

There are a number of communities currently working in
this area, with different approaches and different underlying
formalizations. These are, broadly speaking, communities
with an interest in conceptual modeling. To assess their
approaches, a benchmark framework was developed as
described in the first part of the paper. The benchmark frame-
work has three components.

The first is an example of classification that is sufficiently
rich to illustrate a reasonably broad set of requirements. For
this, a classic example of classification from biology is used,
the Linnaean classification. This is often seen in the literature

on classification and because of its richness can be regarded
as a classification system.

The second is a formal structure for classification. We
use a mathematical theory, set theory, with a particular
emphasis on the mathematical object, the powerset (often
called powertype in computing) and associated objects. The
purpose of this structure was to provide sufficient formal
detail to benchmark the classification structures under analy-
sis. It is not intended to be a fully fledged formalization,
to, for example, stand shoulder to shoulder and compete
with the approaches reviewed here. Nor is there intended
to be any suggestion that set theory (and its semantics)
is the only possible way of formalizing these structures
(indeed, as discussed below, there are competing formal
approaches within mathematics). For us, it is one useful way
of characterizing the structure we are looking at so we can
benchmark it.

The third component is built from the preceding com-
ponents, it is an analysis of the selected example’s formal
structure using the mathematical objects. This gives an
insight into the underlying formal structure of the classifi-
cation pattern.

1.5 ISE survey: assessing the formalization

The benchmark framework was used to survey the evolution
of the formalization. The survey starts by taking a brief gen-
eral look at the adoption of the mathematical structures, to
provide a benchmark againstwhich tomeasure their adoption
of a formalized classification structure.

The paper then surveys the formalization by commu-
nity. Three communities were found making significant
contributions in this area; these communities are reviewed
in some detail. The completeness of their formalization
was analyzed against the formalized benchmark. More-
over, the literature of a number of communities making
indirect contributions was reviewed. This is described in
the second part of the paper. Finally, a summary of the
survey is provided, looking at how far the adoption has
progressed across the communities, both from the perspec-
tive of the mathematical structures and from the benchmark
requirements.

2 The classification benchmark

In this section, the classic example, i.e., the Linnaean bio-
logical classification, is described. This example was chosen
as the benchmark for the surveyed literature. The example
is reasonably sophisticated and helps to illustrate the level
of complexity that appears in real situations. An important
benefit of choosing a classical biological example is that it
is well studied. This does not mean the example is not rel-
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Fig. 1 Linnaean classification scheme

Fig. 2 Example individuals

evant in other areas; there are many examples in business
with a similar kind of classification structure; ISO 10962—
Classification of Financial Instruments is a modern example.

Biological classification is one of the earliest modern
(after the emergence of printing) systems of classification.
It is crystallized in the ranked system of Carl Linnaeus upon
which the current Nomenclature Codes are based. One stan-
dard definition of the classification is Mayr and Bock [75]:
“The arrangement of entities in a hierarchical series of nested
classes, in which similar or related classes at one hierarchi-
cal level are combined comprehensively into more inclusive
classes at the next higher level.”

Carl Linnaeus published his classification system in the
book Systema Naturae. This went through several editions,
the first being published in 1735. The Linnaean system, in
its original form, represented a classification of all natural
things (including animals, plants, and minerals). In its mod-

ern equivalent, it is primarily used as a classification of living
organisms (animals and plants).

The Linnaean system classifies livings organisms at dif-
ferent levels known as ranks. In this example, there are five
ranks: Kingdom, Class, Order, Genus, and Species. Each
rank breaks down the classifications of the previous rank
into finer detail. Figure1 illustrates this breakdown. Individ-
ual animals are typically shown as instances of the lowest
level rank, Species; Fig. 2 has some examples. (Class is
an overloaded term, but it should be clear from the con-
text here that “Class” means Linnaean class and not some
other sense; for example object-oriented class or set-theoretic
class).

Linnaeus’s Systema Naturae went through several edi-
tions, with the classification updated in each. Subsequently,
the classification continued to evolve. One aspect of the
evolution was the emergence of different bases for the clas-
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Fig. 3 Structure of the Linnaean classification scheme

sification, for example, morphology-based phenetics and
ancestor-based cladistics. More recently, Ghiselin [39] and
Hull [54] suggest that instead of viewing species as natural
kinds, they should be thought of as individuals. For the bench-
mark example, the question of the “correct” classification is
not material. What is required is merely an example of a suf-
ficiently sophisticated classification structure. Hence, a basic
Linnaean structure is adopted, as this is adequate for almost
all the needs of this paper.

There is an aspect of classification that this simple Lin-
naean example by its nature does not illustrate; this is that
something can be classified in multiple ways. Within the
example, each individual organism is classified once and
only once—at the lowest rank. To see that this might not
be the whole picture, consider the phenetic and cladis-
tic classifications mentioned above. In a system with both
classifications, some individual organisms will be classified
twice, once by each of the two systems, and some clas-
sifications will have multiple parents. This is not an odd
extreme situation. There are classification systems with this
kind of multiple classification built into their framework.
The colon classification developed by Ranganathan [101]
for libraries is an unambiguous example. This has multiple
classification taxonomies called facets, and every document
is multiply classified under each facet. This is sufficient evi-
dence that multiple classification is a requirement that should
be supported by a reasonably sophisticated classification
pattern.

2.1 Formal structure

This paper is concerned with the formal structure of the cho-
sen classification scheme. One common way of illustrating
this is by substituting meaningless labels for names, show-
ing the structure without the content (for a classic example,
see the railroad map in Carnap’s The Logical Structure of the
World [16]). This is done for Figs. 1 in 3. The aim of thiswork
was to characterize the nature of this structure, irrespective
of the content; elements of which would re-appear in other
classifications.

3 Mathematical background

Modern mathematics can be seen as the science of formal
patterns, as described by Devlin [27] and Shapiro [105]. This
makes it a good tool for capturing the formal structure of
the classification pattern, such as that in Fig. 3. This section
describes the mathematical objects needed for this.

3.1 Which mathematical theory?

There is a choice of theories from which to select the
required objects. The foundations of mathematics are an
active research area, and there are three broad mathemati-
cal theories in play. In historical order of emergence, these
are set theory, type theory, and category theory. All these
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theories contain the resources to characterize the classi-
fication pattern and much else. While there are technical
differences between the theories, these differences are not
relevant for the purposes of this paper. In principle, the frame-
work could be based upon any (or all) of the three theories.
However, to simplify the exposition, this paper is based on
one theory, set theory, as it is the most approachable for the
non-specialist. For the interested reader, a brief overview of
such differences and the relations between the theories is
provided at the end of this section along with some useful
references.

3.2 Scope

Only a small core of the theory is required for the for-
malization of the classification pattern. The interest of this
study centers primarily on the mathematical object that set
theory calls “powerset” and its associated objects, such as
“set” and “subset.” Analogous objects appear in all three
theories, sometimes with different suffixes. In type the-
ory, the suffix “type” is used instead of set; it has types,
powertypes, and subtypes. In category theory, there are
objects called “set,” “powerset,” and “subset,” and these
have been generalized to “objects,” “powerobjects,” and
“subobjects.”

In the literature, these terms are sometimes spelled as a
single word (“powerset,” “powertype,” etc.), while at other
times the two-word form is used (“power set,” “power type,”
etc.). In this paper, the single word form will be adopted.

This section will focus on the powerset, core to the formal
structure of classification, and provide a brief overview of the
formal structure of powersets and associated mathematical
objects. Powersets are introduced in the next section from
a simple historical perspective; for more detail on the early
history, see Ferreirós [31], Kanamori [61], Van Heijenoort
[117], and Grattan-Guinness [44].

3.3 Powersets and related mathematical objects

As subsequent sections will show, the ISE literature sur-
veyed normally does not always have a sufficiently clear
understanding of the mathematical objects underpinning the
mathematical framework that this paper adopts. Hence, care
is taken to describe the mathematical underpinnings in this
section. Readers familiar with set theory can skim or skip
this section. To assist the reader, the key symbols used are
explained in Appendix.

3.3.1 Origin and definition of powerset

Set theory is a core part of modern mathematics and is often
employed as a foundational system for the whole of the disci-
pline. Powerset is a keypart of the theory and is commonplace

in mathematics. Its origin can be traced back to Cantor’s
[12] diagonalization theorem, which used but did not explic-
itly mention powerset. The first explicit mention of powerset
is in Zermelo’s [120] axiomatization of set theory, which
includes among its axioms AXIOM IV: Axiom of the pow-
erset (Axiom der Potenzmenge):

∀x ∃y ∀z [z ∈ y ≡ ∀w (w ∈ z → w ∈ x)] (1)

Or, informally:
To every set T, there corresponds a set T’, the powerset of

T, that contains as elements precisely all subsets of T.
It is from Zermelo’s axiomatization that powersets then

became commonplace in mathematics. Zermelo’s axioma-
tization was developed by Abraham Fraenkel retaining the
powerset axiom, and the resultant Zermelo–Fraenkel theory,
known as ZF, is the basis for the standard axiomatization
used inmathematics today. Inmodernmathematics, the pow-
erset of A is usually written as ℘(A) (where ℘ is called
the “Weierstrass p”). This convention shall be followed
here.

A simple example will help to illustrate what a powerset
is. Consider the following set:

A ≡ {Africa,Asia,Europe}

The powerset of A or ℘(A) is a set that has as members
all the subsets of A; therefore,

℘(A) ≡ { {Africa} , {Asia} , {Europe} , {Africa, Asia} ,

{Asia, Europe} , {Africa, Europe} ,

{Africa, Asia, Europe} }

Figure4 illustrates this example, showing visually that
all subsets of A are members of ℘(A) and all members of
℘(A) are subsets ofA. It also shows the instance-of-powerset
relation between the power-instance and its power-set. Tradi-
tionally, the empty set is considered to be a member of every
powerset; however, there are nonstandard approaches that
eschew this. To simplify presentation, particularly in rela-
tion to the classification pattern, here and elsewhere in the
paper, the empty set has deliberately been omitted from pow-
ersets.

The definition of a powerset uses the terms “set,” “mem-
bers,” and “subsets.” These are part of a closely associated
group of mathematical objects required in order to charac-
terize the formal structure of classification. These elements
are described in the following subsections.

3.3.2 Set (and members)

Sets are often described as collections of objects. There is
some debate as to how close the natural notion of collections
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Fig. 4 Example powerset

is to sets. For example, Black [10] suggests that there may
be differences between set and collection, while Halmos [47]
(p. 1) considers the two almost synonymous, stating:

“Apackofwolves, a bunchof grapes, or a flockof pigeons
are all examples of sets of things.” [47]

Althoughmathematiciansworkedwith sets beforeCantor,
it is Cantor who is closely associated with them due to a few
often-cited descriptions:

“By a ‘set’ we understand any collection into a whole M
of definite well distinguished objects m of our intuition
or thought.” [13]
[A set as a] “many, which can be thought of as one, i.e.,
a totality of definite elements that can be combined into
a whole by a law.” [13]

This “one over many” argument has roots going back
to Plato; for example, in [100], he writes “We customarily
hypothesize a single form in connection with each collection
of many things to which we apply the same name.” Plato’s
dialogues contain arguments against this position, for exam-
ple the “third man argument” in [99]. This argument was
taken upbyAristotle, and the debate has generated significant
discussion; a recent example is Fine [33]. Cantor’s resolu-
tion, introducing an object that is both one and many, is now
standard in set theory. However, a couple of the powertype
strands we examine later do not accept the Cantorian reso-
lution and propose a different approach. Hence, we use this
formalization as a benchmark for classification functionality,
rather than as a template for a solution.

There are little or no constraints on what a set can be.
Sets are arbitrary, and any collection of objects in a domain
qualifies as a set as described by Ferreirós [32]. One modern
view is that sets are defined by the member-of relation. It is
said that A is a member-of the set B (in symbols A ∈ B), or
that the set B contains A as its element. The importance of
the member-of relation is shown by the way the identity of a
set is determined by its members; two sets are equal if they
have exactly the same elements as members. In Zermelo’s
[120] set theory, this was enshrined in AXIOM I: Axiom of
extensionality (Axiom der Bestimmtheit):

∀x ∀y[∀z(z ∈ x ≡ z ∈ y) → x = y] (2)

Or, informally:

If every element of a set M is also an element of N and
vice versa, then M ≡ N.
Briefly, every set is determined by its elements.

3.3.3 Ur-elements

Some objects in a domain do not have members, so they are
not sets. These are traditionally known as ur-elements (from
the German prefix ur-, “primordial”). In the simple exam-
ple above (Fig. 4), Africa, Asia, and Europe are ur-elements.
This distinction can be seen as having similar formal prop-
erties to the distinction between universals and particulars
that started with Aristotle’s division into primary substance
(particular, ur-element) and secondary substance (universal,
set); in Categories, Aristotle [3] stated that primary substance
cannot have instances, though it can be an instance, whereas
a secondary substance typically has instances.
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3.3.4 Subset-of

A subset is a set contained in another set. More formally, if
A is a subset of B (this is equivalent to “B is a superset of
A”) then every member-of A is also a member-of B. This can
be written in a number of ways, as “x is a subset-of y” or
“subset-of (x, y)” or “x ⊆ y” and is defined as:

x ⊆ y iff ∀z (z ∈ x → z ∈ y). (3)

From this definition, it follows that a set is a subset-of itself,
a property known as reflexivity.

∀z(z is a Set → z ⊆ z). (4)

From the definition, it also follows that the subset-of relation
is transitive. A relation TR is transitive if xTRy (TR relates
x to y) and yTRz implies that xTRz. Formally,

∀x ∀y ∀z (xTRy ∧ yTRz) → xTRz (5)

In terms of the subset-of relation, this schema becomes:

∀a ∀b ∀c (a ⊆ b ∧ b ⊆ c) → a ⊆ c (6)

Here is an example with the constants given a specific inter-
pretation.

A ≡ (set of) animals

B ≡ (set of) mammals

C ≡ (set of) dogs

Here given that C is a subset-of B (i.e., all dogs are mam-
mals) and B is a subset-of A (i.e., all mammals are animals),
then C is a subset-of A (i.e., all dogs are animals). More
formally,

(A ⊆ B ∧ B ⊆ C) → A ⊆ C (7)

These relationships are illustrated in Fig. 5.
A commonmistake for beginners is to conflate the subset-

of and the member-of relations as, for example, noted in
Partridge [88] and Kühne [63]. A good rule of thumb is that
the subset relation is transitive, whereas the member-of rela-
tion is not. This member-of intransitivity stratifies the sets
into a leveled hierarchy—in a way that the subset-of relation
does not.

Subset-of (like sets) have few, if any, constraints. Given a
set X and its members, then every combination of the mem-
bers is also a set and a subset-of X . For example, given the set
X = {1, 2, 3}, all of the following are sets with a subset-of
relation to X :

Fig. 5 Subset transitivity

1. {1, 2, 3},
2. {1, 2},
3. {2, 3},
4. {1},
5. {2},
6. {3}.

3.3.5 Powerset expanded

The objects defined above are required to understand the def-
inition of powerset in Zermelo’s AXIOM IV (given above).
The definition is expanded here with two of its consequences
that show the relationship between subsets and members as
this will prove useful in the exposition.

Given a set T and its powerset ℘(T):

1. All subsets of T are members of ℘(T).
2. All members of ℘(T) are subsets of T.

More formally,

∀T ∀z [(z ⊆ T ) → (z ∈ ℘(T ))] (8)

∀T ∀z [(z ∈ ℘(T )) → (z ⊆ T )] (9)

One way of viewing these two consequences is as closure
rules. (8) can be seen as powerset-member closure—where
any object that is recognized as a subset of the power-member
(the set that is being “powerset-ed”) has also to be recognized
as amember of the powerset. (9) correspondingly can be seen
as a powerset-subset closure.

In standard set theory, each set has one and only one pow-
erset, and vice versa, each powerset is a powerset of one and
only one set. In modeling terms, this is usually stated as the
powerset-of relation is one-to-one.
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3.3.6 Set of subsets of a set (powerset-subset)

A non-empty collection of subsets of a given set S is called a
set of subsets of S, or a set of sets over S or a family of subsets
of S. This can be regarded as weaker than the powerset as it
meets (9), but not necessarily (8); as all instances of the “set
of subsets of S” are subsets of S, there may be subsets of S
that are not instances of the “set of subsets of S.”

Another way of thinking of a “set of subsets of S” is of
a subset of a powerset, a powerset-subset. The powerset of
S will contain all the subsets of S. So any sets of subsets of
S will be a subset of the powerset of S. The limiting case is
where the set of subsets of S is all the subsets and so it is the
powerset of S. The powerset of S is a powerset-subset of S
because the subset relation is reflexive, so the powerset of S
is a subset of itself.

Formalizing this Powerset-Subset-Of relation can be done
by deconstructing it into already existing relations. If x is a
powerset-subset of y, then x is a subset of the powerset of y.
More formally,

Powerset-Subset-Of ≡ PSO (10)

(< x, y >∈ PSO) ≡ (x ⊆ ℘(y)) (11)

Powerset-subsets, as subsets of a powerset, are subject
to the powerset-member closure mentioned above. In other
words, every member of the powerset-subset is also a subset
of power-member. However, it is not subject to powerset-
subset closure, for obvious reasons.

It turns out that many simple classifications are powerset-
subsets. This is illustrated in the following example. Consider
the set {1, 2, 3}. Its powerset, ℘({1, 2, 3}), is a set of all

its subsets—shown in Fig. 6. As the figure shows, there are
various subsets of the powerset (in other words, powerset-
subsets) that classify the original set: three-member sets,
two-member sets, and one-member sets. A more compli-
cated classification system will take these powerset-subsets
as a ranking of the classifications by number of members—a
topic presented later in the paper when the Linnaean example
is examined.

Unlike the powerset-of relation, the powerset-subset-of
relation is many-to-many. Given a set of subsets of S, there
are a number of other sets of which it could be the powertype-
subset; any superset of S will be a candidate. Similarly, for a
set S of a reasonable size, therewill be a significant number of
sets of subsets it could have. Thismakes the relationmany-to-
many. The following example will help to clarify this point.

Consider the set S = {{1}, {2}}. S is a set of subsets for
any set that has 1 or 2 as members, for example, any of the
following sets and all their supersets qualify: {1, 2}, {1, 2,
3, 4}. Figure7 represents this example.

3.3.7 Intersection and union of sets

Two important operations that can be conducted on sets are
intersection and union. The intersection of a group of sets is
the set of elements that belong to every set in the group. For
example, the intersection of the sets, {1, 2}, {1, 3} and {1,
4} is {1}. The union of a group of sets is the set of elements
that belong to any set in the group. For example, the union
of the sets, {1, 2}, {1, 3}, and {1, 4} is {1, 2, 3, 4}.

Loosely speaking, two or more sets are said to be disjoint
if they have no element in common, this is often stated as
their intersection being empty. For example, {1, 2, 3} and

Fig. 6 Example powerset
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Fig. 7 Many-to-many powerset-subset-of relation

{4, 5, 6} are said to be disjoint sets, whereas {1, 2, 3, 4} and
{4, 5, 6} are not; in this case, one says that they “overlap.”
More technically, a set of disjoint sets is a set whosemembers
are sets that have no element in common; the set {{1, 2, 3},
{4, 5, 6}} is a set of disjoint sets.

3.3.8 Cover of S

A (non-empty) set Z of non-empty subsets of S is called a
cover (or covering) of S if the union of Z’s members is the
original set S. For example, there is only a single cover of
{1}, namely {1}. However, there are five covers of Y = {1,
2}, namely:

1. {{1}, {2}},
2. {{1, 2}},
3. {{1}, {1, 2}},
4. {{2}, {1, 2}},
5. {{1}, {2}, {1, 2}}.

As this example shows, the subsets in a cover can overlap.
Examples of sets of subsets of Y that do not cover it are:

{{1}} and {{2}}.
If Z is a cover of S, then Z is also a powerset-subset of

S. Hence, the Cover-Of relation is a subset of the Powerset-
Subset-Of relation, formally:

Cover-Of ≡ CO (12)

∀x ∀y[(< x, y >∈ CO) → (< x, y >∈ PSO)]
≡ (CO ⊆ PSO) (13)

The powerset can be divided by cover into two sets: the
covering sets and the non-covering sets. Every set of subsets
of S falls into one or the other of these two. Of course, one
needs to know S to determine which side the set goes.

3.3.9 Partition of S

A partition of a set S is a set of disjoint subsets whose union
is S, in other words disjoint subsets of S that cover S. If Z
is a partition of S, then Z is also a powerset-subset of S.
Hence, the Partition-Of relation is a subset of the Cover-of
and Powerset-Subset-Of relations, formally:

Partition-Of ≡ PaO (14)

∀x ∀y [(< x, y >∈ PaO) → (< x, y >∈ CO)]
≡ (PaO ⊆ CO) (15)

(PaO ⊆ CO) ∧ (CO ⊆ PSO) → (PaO ⊆ PSO) (16)

The partition-set of a set S is the set of all partitions of
S. A set of size n (i.e., with n members) can be partitioned
into a fixed number of non-empty subsets; in other words,
the partition-set has a fixed number of members. This can be
calculated and is known as the Bell number. For example,
there are five ways a three-membered set can be partitioned;
so the partition-set has five members. This means that the
Bell number for a set of size = 3 is 5. For example, the set of
numbers {1, 2, 3} can be partitioned as follows:

1. {{1}, {2}, {3}}
2. {{1, 2}, {3}}
3. {{1}, {2, 3}}
4. {{1, 3}, {2}}
5. {{1, 2, 3}}

The set of these five subsets is the set of partitions of the
set {1, 2, 3}. Each one of the five members of this set is a
partition of the set {1, 2, 3}. For each member partition, the
union of all its members is the set {1, 2, 3}.

The Bell number increases quickly, so for size = 10 it is
115,975.

The partition-set of a set S is a subset of the powerset of S.
An incomplete partition of a set S is a collection of disjoint

subsets whose union is a subset of S, but not S itself (also
known as a proper subset of S), in otherwords disjoint subsets
of S that do not cover S. For example, the set of numbers {1,
2, 3} can be incompletely partitioned as:

1. {{1}, {2}}
2. {{1}, {3}}
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3. {{2}, {3}}
4. {{1, 2}}
5. {{2, 3}}
6. {{1, 3}}
7. {{1}},
8. {{2}} and
9. {{3}}.

3.4 Reifying the operations

Conceptual modeling prefers a declarative style, where
things such as the relation between a set and its powerset
are treated explicitly as a relation rather than, as in logic
textbooks, as an operation.

3.4.1 Powerset-of relation

The relation between a set and its powerset has already
been identified as one-to-one. Also, from the above def-
initions, it is known that the set is a member-of the
powerset—as it is a subset of itself. So for each set-powerset
combination, there is a unique member-of relation that
links them; these are labeled powerset-of relations. More
formally,

Powerset-Of ≡ PO (17)

∀x ∀y [(< x, y >∈ PO) → (y ∈ x)] equivalent to (18)

∀x ∀y [(x = ℘(y)) → (y ∈ x)] (19)

3.4.2 Powerset-subset-of

The simplest declarative solution is to deconstruct this into
two already existing relations. Saying that x is a powerset-
subset of y is equivalent to saying that x is a subset of the
powerset of y. More formally,

Powerset-Subset-Of (x, y) ≡ PSO(x, y) (20)

PSO (x, y) ≡ x ⊆ ℘(y) (21)

3.5 A technical point

3.5.1 The powerset axiom and the universal set

Though this is a technical matter and only indirectly of con-
cern here, it is worth being aware that the topic exists. One
of the areas of study in set theory is the universal set, see
Church [18], Barwise and Moss [9], and Forster [35]. This
is the set that contains all other sets as members, it is a way
to formalize the statement “x is a set”; this becomes “x is a
member-of the universal set.”

However, it turns out that if one wants to include this
in one’s formalization, then there are a number of formal
trade-offs that need to be considered. One trade-off relates
to the ZF powerset axiom which says that every set has a
powerset. This is problematic as the cardinality (the num-
ber of members) of a powerset is always greater than the
original set. If one adopts this axiom as it stands and the
universal set, then one arrives at an inconsistency. The pow-
erset is a set and so a member-of the universal set. Every
instance of the powerset is a set, and so a member-of the
universal set, hence the powerset is a subset of the universal
set. But it has more members than the universal set which is
impossible.

There are a number of technical ways of accommodat-
ing this. ZF avoids the problem by having no universal
set. Church [18] proposed a weaker powerset axiom. Quine
proposed, in New Foundations, a subset of Cantorian sets
to which the cardinality of the powerset axiom applied.
While it is important to have a consistent formal struc-
ture, the particular way of dealing with this issue does
not affect the topic of this paper, and so is outside the
scope.

3.5.2 The extensionality of set theory

Set theory is extensional. This means that the extension, the
members, of the set do not change and that two sets with
the same extension (members) are the same set. This is an
extraordinarily powerful criterionof identity.Any formal the-
ory of a domain will need to provide a semantics and face
issues such as accounting for change over time and possible
members; our use of set theory here is no different. The stan-
dard way to do this is through the use of a four-dimensional,
possible world semantics, see Lewis [67], and we assume a
similar semantics for our benchmark. Some of the classifi-
cation systems we review later in the paper explicitly adopt
this semantics.

3.6 Alternative mathematical frameworks

Earlier it was noted that there are alternative foundational
mathematical frameworks—type theory and category the-
ory which contain objects with an analogous structure to
set theoretic objects described above. These are very tech-
nical subjects, but for completeness, a very brief description
is provided in this section along with references.

3.6.1 Type theory

Russell [103] introduced the first type theory in 1903. Com-
puter scientists have found a later type theory, Martin-Löf
[74] type theory, useful. Mathematicians have more recently
developed this into homotopy type theory [114].
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What distinguishes set theory and type theory is that in set
theory, objects are assumed to exist independently, whereas
in type theory each object is assumed to be dependent upon its
type. For example, in set theory, the set {1, 2, 3} is assumed
to exist. In type theory, one might say that the set {1, 2, 3}
exists and is of type SET. To illustrate the difference, in type
theory everything has to have a type, so one has to ask what
type the object SET is. One could say it is of type TYPE and,
to stop an infinite regress, say the object TYPE is of type
TYPE. Barwise and Moss [9] discuss the logical issues this
circularity creates.

3.6.2 Category theory

Eilenberg and MacLane [29] introduced categories as a
formal ground for what they called functors and natural
transformations. Since then, they have evolved significantly.
Though Grothendieck [45], Freyd [38], and others chose for
practical reasons to define categories in set-theoretic terms,
subsequently sets have been treated as a kind of category, a
special kind of topos.

Category theory formalizes mathematical structures into
categories that are collections of objects and arrows (also
called morphisms) that satisfy some basic conditions. There
is a category of sets, where the objects are sets and the arrows
are functions from one set to another (though the objects of
a category need not be sets nor the arrows functions). Any
way of formalizing amathematical concept such that it meets
the basic conditions on the behavior of objects and arrows is
a valid category, and all the results of category theory will
apply to it.

The relationship between categories and sets is quite
technical—see Blass [11] for an overview—and is outside
the scope of this paper.

4 Formalizing classifications using mathematical
set-theoretic objects

The formal structures captured by powerset and its related
mathematical objects, described in the previous section, are
sufficient to characterize the core formal structure of clas-
sifications. In particular, it provides tools to examine the
formal structure of the classical Linnaean system introduced
earlier. This is traditionally considered taxonomical. This is
true, but as the following analysis shows, the implicit pattern
underlying the Linnaean system is more intricate than a mere
taxonomy (i.e., hierarchy just based on subsets).

4.1 The Linnaean taxonomy

Figure1 above presented the explicit Linnaean taxonomy
which can be interpreted formally. A natural interpretation
for this, as formany taxonomies, is of the classification nodes
as sets, as they have members. Natural Things is the set of
all natural things, Animals is the set of all animals, and so on.
From this, it naturally follows that the relationship between
these sets in the taxonomic hierarchy is a subset relation.
For example, Animals is a subset of Natural Things; every
member-ofAnimals is also amember-ofNatural Things. The
subset schema is:

x ⊆ y iff ∀z (z ∈ x → z ∈ y). (22)

Translating this into the current context:

Natural Things ≡ NT (23)

Animals ≡ An (24)

∀z (z ∈ An → z ∈ NT) (25)

Fig. 8 Taxonomic nodes as sets
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This implies that:

An ⊆ NT (26)

This interpretation is shown in Fig. 8.

4.2 The Linnaean classifications

As Natural Things is a set, any arbitrary collection of its
members is a subset. Only a select few of these are Linnaean
Classifications. For example, arbitrary unions of the classifi-
cations, such as the union of Mammalia and Plants, are not.
This can be made explicit by reifying the selected sets as
members of the set Linnaean Classifications. This is a subset
of the powerset of Natural Things, Natural Things Powerset.

Natural Things Powerset ≡ NTP ≡ ℘(NT) (27)

Linnaean Classifications ≡ LC

≡ {Animals, Plants, . . . ,Primates, . . . ,Felis tigris, . . .}
(28)

LC ⊆ ℘(NT) (29)

It is assumed that the powerset relation has been reified as
a powerset-of relation as described above. Then, <Natural
Things Powerset, Natural Things> is an instance of the
powerset-of relation; formally,

∃x [(x ≡< ℘(NT),NT >) ∧ (x ∈ PO)] (30)

Fig. 9 Linnaean classifications

This is modeled in Fig. 9. The dashed line with an open
arrowhead represents the member-of (i.e., type-instance)
relationwhile the continuous linewith closed arrowhead rep-
resents the subset-of relation. Since the powertype instance
relation is a type of type-instance relation, a similar notation
is used.

4.3 The five Linnaean ranks

Figure1 shows the five Linnaean ranks as levels in the tax-
onomy. The question is how to interpret these. A natural
interpretation of their formal structure is as a set of the sets
in that rank. So, for example, the rank Orders is the set
{Primates, Bruta, Ferae, …}, and so Bruta is a member-of
Orders, more formally:

Orders = Or = {Primates, Bruta, Ferae, . . .} (31)

Bruta = Br (32)

Br ∈ Or (33)

As the subset relation is transitive and given the interpreta-
tion above, it follows that every Linnaean classification node
is a subset of all the nodes above it in the taxonomic hier-
archy. In particular, it is a subset of the root node, Natural
Things. The full formal analysis for Felis leo is below.

[(Felis leo ⊆ Felis) ∧ (Felis ⊆ Ferae)]
→ ( Felis leo ⊆ Ferae) (34)

[(Felis leo ⊆ Ferae) ∧ (Ferae ⊆ Mammalia)]
→ (Felis leo ⊆ Mammalia) (35)

[(Felis leo ⊆ Mammalia) ∧ (Mammalia ⊆ Animals)]
→ (Felis leo ⊆ Animals) (36)

[(Felis leo ⊆ Animals) ∧ (Animals ⊆ NT)]
→ (Felis leo ⊆ NT) (37)

So the Species Felis leo, its parent Felis, and all the nodes
above it are subsets of the root node, Natural Things, as
shown in Fig. 10, with the new subset-of relations shaded
gray—this transitivity is also shown in Fig. 5.

With these subset relations exposed, a natural extension
is to see ranks as a set of subsets of the root node, Natural
Things. A more formal way of expressing this is that each
rank is a subset of the powerset of the root node, Natural
Things Powerset; more formally (and shown graphically in
Fig. 11),

Natural Things Powerset ≡ NTP ≡ ℘(NT) (38)

Orders ≡ Or (39)

Or ⊆ ℘(NT) (40)
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In Fig. 1, there is no explicit Linnaean ranks object. It is
implicit, implied by a virtual column on the right-hand side
of the figure. It can now be made explicit. It is the set of the
individual Linnaean ranks; more formally,

Linnaean Ranks ≡ LR

≡ {Kingdoms, Classes, Orders, Genera, Species} (41)

Again, the Linnaean Ranks can be tied back to the root, by
noting that Linnaean Ranks is a subset of the Natural Things
Powerset Powerset;more formally (and shown in Fig. 12with
the reified powerset-of member relation),

Fig. 10 Subsets of the root node

Natural Things Powerset Powerset ≡ NTPP ≡ ℘(℘(NT))

(42)

LR ⊆ ℘(℘(NT)) (43)

Linnaean Ranks is a subset of Natural Things Powerset
Powerset and Linnaean Classifications is a subset of Natural
Things Powerset. There is a relationship between the two;
members of Linnaean Ranks are also subsets of Linnaean
Classifications. More formally,

Linnaean Ranks = LR (44)

Linnaean Classifications ≡ LC (45)

∀y[(y ∈ LR) → (y ⊆ LC)] (46)

This can be expressed by using the powerset of Linnaean
Classifications as (see Fig. 13 with the reified powerset-of
relations);

Linnaean Classifications Powerset ≡ LCP ≡ ℘(LC) (47)

(LC ⊆ NTP) → (LCP ⊆ NTPP)] (48)

As the example shows, powersets are used as contain-
ers for classifications. TheNatural Things Powerset contains
Linnaean Classifications and the individual ranks. The Lin-
naean Classifications Powerset contains Linnaean Ranks.
Powerset is a formal object—given the set, one can construct
its powerset. There is no extra analytic or explanatory work
to do; hence, it is, to use Armstrong’s [4] phrase, “an onto-
logical free lunch.” Pragmatically, one can regard it is as a
useful organizational device.

4.4 Rank ordering and partitioning

Afeature of the taxonomic classification is that for each node,
its subnodes at the next level partition it. For example, at the
first stage, the set Natural Things is partitioned into the sets,

Fig. 11 Ranks as subsets of natural things powerset

123



Formalization of the classification pattern

Fig. 12 Linnaean ranks as an object

Fig. 13 Linnaean classifications powerset

Fig. 14 Mammalia set partitioned

Animals, Plants, etc. At the second stage, each of these sets
is further partitioned; for example, the set Animals is par-
titioned into the sets Mammalia, Aves, etc. Then, the Class

Mammalia is partitioned into Primates, Bruta, Ferae, and so
on. Each member-of the set Mammalia belongs to one and
only one of the subnodes (subsets)—as shown in Fig. 14.

These partitions are not explicitly specified in most clas-
sification structures. One option would be to specify each
partition individually. This is less than ideal: firstly because
there would be a significant number of partitions and sec-
ondly, and more importantly, because the underlying general
patternwould not be specified explicitly. So the patternwould
not scale well, as when new nodes were added, there would
be nothing to enforce the general pattern.

A more general approach is to recognize that each rank
partitions the root node, Natural Things, and that the ranks
are ordered by the subset relation. From this, the individual
partitions can be inferred.

This begins by introducing the set of partitions of Natural
Things—Natural Things Partitions.LinnaeanRanks is a sub-
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Fig. 15 Superset-subset member pattern

Fig. 16 Rank ordering

set of this. The rank ordering is then specified by indicating
that a member-of the higher node has subsets that are mem-
bers of the lower node. And conversely, that a member-of the
lower node is a superset of one, and only one, member-of the
higher node.

For example, take Kingdoms and Classes. Every member-
of Kingdoms is a superset of members of Classes, and vice
versa, every member-of Classes is a subset of one and only
one member of Kingdoms.

Formally, this is described as follows: recognizing the
appropriate subset of the subset relation:

K ≡ Kingdoms (49)

C ≡ Classes (50)

∀x [(x ∈ K] → ∃y [(y ∈ C) ∧ (y ⊆ x)] (51)

∀y [(y ∈ C) → ∃x [(x ∈ K) ∧ (y ⊆ x)

∧∀z [((z ∈ K) ∧ (y ⊆ z)) → (x = z)]] (52)

From this, one can identify the class of subsets relat-
ing Kingdoms and Classes, the “kingdoms-super-classes-
subsets.”

kingdoms-super-classes-subsets(a, b) ≡ kscs(a, b) (53)

∀x ∀y [(kscs(x, y)) → ((x ∈ K)& (y ∈ C)& (y ⊆ c)]
(54)

It is perhaps easy to visualize this in amodeling diagram—
see Fig. 15.

This pattern extends to all the ranks giving them a linear
ordering—as shown in Fig. 16. Note that “kingdom-super-
classes-subset” is the set of subset relations between King-
doms andClasses. In general, therewill be such a set between
consecutive linear ranks. This is a good example of the use-
fulness of being able to build a hierarchy of subset relations.

4.5 The underlying formal structure

The analysis has, hopefully, exposed some of the kinds of
formal structures that arise in classification patterns, in par-
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ticular the repeated use of powersets. The central structure
is a set-subset hierarchy for selected sets. One needs to go
up a powerset level to reify these selected sets into a classi-
fications set. In the selected example, the classifications are
divided into ordered ranks. One needs to go up a second pow-
erset level to reify these ranks. The ranks are then ordered
using a subset of the subset-of relation. This illustrates the
ways in which the classification pattern involves a range of
inter-locking formal structures generated by powersets.

The example shows how powersets can be used to charac-
terize the formal structure of the classification pattern. One
side effect of the adoption of set theory as the framework for
formalization is that this leads to the introduction of types
whose instances are also types—types of types. However, it
is the powertypes that generate the classification pattern—
types of types, by themselves are inadequate. Later, we will
look at approaches that aim to characterize the classification
generating pattern without the use of types of types.

5 A survey of powertypes in ISE

The evolution of the formalization of classification took place
in the communities working on the development of seman-
tic or conceptual models. Their focus on how to represent
domains is leading to the recognition of a requirement to
represent the classification pattern formally.

However, there is another interconnecting group of com-
munities and avenues of adoption that is of interest here. This
is the general adoption of the formal mathematical struc-
tures addressed in this paper. Mathematics is an obvious tool
for working with formal structures; hence, it is no surprise
that communities working with computer systems adopted
it. The adoption is of interest here for two reasons. Firstly,
the development of conceptual modeling can be better under-
stood when it is realized that it emerged from the early stages
of a more general adoption of mathematical structures. Sec-
ondly, it provides a historical benchmark against which the
less clean adoption in the conceptual modeling communities
can be measured.

Broadly speaking, there is a general order of adoption
of the mathematical structures. Basic notions of set and
member-of in some form were adopted from the start. Sub-
sequently, subset-of is adopted, and finally, powerset is
adopted. However, the analysis shows a difference in the
pace of adoption in the conceptual modeling and the main
mathematics adopting ISE communities. While many math-
ematics adopting ISE communities absorbed the full range
of objects analyzed earlier, some conceptual modeling com-
munities have not yet completely adopted them.

In the first section below, the context is provided, describ-
ing briefly the history of the adoption of mathematical
objects. In the subsequent sections, the focus is on the con-

ceptual modeling communities. Initially, a broad outline of
the adoption will be given and the main strands of devel-
opment identified. Then, the various strands of development
will be examined.

In the conceptual modeling communities, the literature
shows clearly that the adoption of powerset was and is driven
by the requirement for a classification pattern. The research
shows that the adoption of powerset as part of the classifica-
tion pattern is still in the process of maturing, and that the
development has been in a number of different strands with
differing approaches.

Unlike the mathematics adopting communities, the con-
ceptual modeling communities have not, in general, focused
on providing an account of the formal structure, though there
are references to similarities with mathematical objects, such
as powerset (indeed, the objects are often called power-
types). Fromwhat can be determined of the formal structure,
there is a partial adoption of the mathematical objects or the
development of related alternative formal structures. One of
the recurring issues with some of these structures, which is
described in later sections, is that they do not have the formal
expressiveness of the mathematical framework detailed in
this study and so often cannot support the benchmark exam-
ple of this paper.

5.1 The mathematics adopting communities

One area where the use of mathematics appeared at an early
stage was the construction of database models. The first
uses were focused on organizing data, rather than reveal-
ing semantics. Historically, the goal was to build database
models that used data abstractions to hide the implementa-
tion details from the database user, see Smith and Smith and
Smith [111], Lockemann et al. [68], Cardelli and Wegner
[15], and Goldstein and Storey [40].

The database models that emerged in the early 1970s used
abstractions grounded in data structures. Their primary focus
was on the representation, not the represented, so they identi-
fied data objects such as records and their primary and foreign
keys. They made use of mathematical objects to characterize
the data object’s formal structures. For example, Codd [21,
22] introduced the relational model, which made extensive
use of the notion of a set and associated set-theoretic objects,
such as tuples, to capture the formal structure. Implicit in this
was the use of member-of relations; subset-of relations were
only used with the Cartesian product to define relations in
general, and there was no evidence of powersets. In a pattern
of semantic drift, this can be seen repeated elsewhere, Codd
explicitly used the mathematical tuple object to develop an
alternative formalization that he called “relationships”—to
distinguish it from mathematical relations.

Something similar happened in the early days of structured
programming, where set theoretic structures were explicitly
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used to characterize the data being processed. For example,
Hoare [53] (p. 122) in Sect. 7 titled “THE POWERSET” (p.
122) explicitly says “The powerset of a given set is defined
as the set of all subsets of that set.”

As the analysis of data structures became more sophisti-
cated, powerset was also used by Kuper [65], Elmasri et al.
[30], Gyssens and VanGucht [46], Hull and Su [57], Soldano
and Ventos [112]. Some researchers worked with type and
category theory rather than set theory; Martin Löf [74] type
theory was (and still is) popular, see Maietti and Valentini
[70], Valentini [115], Sambin and Valentini, [104]. Cardelli
[14] introduced powertypes, and these were developed by
Aspinall [5]. Category theoretic approaches (such as John-
son et al. [60]) also use powersets.

By the end of the twentieth century, there were commu-
nities that had adopted the mathematical structures and used
all three of the main mathematical foundational theories as
a basis. From the perspective of the limited and relatively
simple set of mathematical structures needed for the clas-
sification benchmark, the adoption of these was stable and
mature.

5.2 Historical context

Things are less advanced in the conceptual modeling com-
munities. By the mid-seventies, there was a recognition that
models needed to “capture more of the semantics of an appli-
cation,” see Codd [23] (See also Mealy [76], Kent [62],
Van Griethuysen [116], and similarly Carnap [16] origi-
nally published in 1928). The focus shifted from data toward
semantics, from the representation to what was being rep-
resented. Early signs were the introduction of Abrial’s [1]
semantic model and Chen’s [17] entity-relationship model.

The pattern of evolution can be seen in Chen [17], which
mentionsmember-of—talking about an “owner-record” hav-
ing a “member-record”: note the representation-oriented
language. It also mentions subset-of in the text, giving an
example, though there is no support for this in the notation.
An extended notation was developed later by Teorey et al.
[113] to support these. There was no mention of powersets.

By the 1980s, the requirements for member-of and subset-
of were established, albeit under different names; Albano
[2] could say “The basic abstraction mechanisms of Seman-
tic Data Models—aggregation, classification [member] and
generalization [subset]—are considered the essential fea-
tures to overcome the limitations of traditional data models
in terms of semantic expressiveness.” Similar sentiments can
be found in a number of papers Hull and King [56], Peckham
and Maryanski [96], and Hull [55]. However, powerset was
the Cinderella—not mentioned.

In the 1990s, a number of papers emerged that explicitly
drew attention to powersets and their use in classification—
most explicitly mentioning the link to the mathematical

object, though not always adopting its formal structure. There
is a “road to Damascus” theme in the early literature, noting
the lack of recognition of powersets in the community and
their ubiquity in the domains being represented, for example,
Odell [81] (pp. 23, 32) and Henderson-Sellers and Gonzalez-
Perez [52].

The approach to classification is framed by an aspiration
to explain as well as characterize the formal structure. It is
a plausible hypothesis that this extra explanatory burden is
a contributory factor to the slower adoption of the formal
structures in the conceptual modeling communities.

These papers can be divided into three major strands, the
first two adopting only part of the formal structures for pow-
ersets:

• Materialization-powertype
• UML-powertype (including Odell)
• BORO-powertype (including ISO 15926-2).

There are also a number of minor strands worth reviewing
for completeness:

• entity-relationship (ER) type
• object-oriented (OO) type.

The following sections review the major and minor
strands, describing how they address the classification pat-
tern and the issues raised by their approach.

The section after that reviews the issues raised, building
up a general picture of the current state of the art on the
use of powersets to characterize the formal structure of the
classification pattern.

6 Major powertype strands

The three major strands emerged at roughly the same time.
They are reviewed below in order of known paper submission
times. However, the timing is so close that submission is not a
reliable guide to order the emergence. The first strand seems
to have emerged independently of the other two strands.
There is a strong personal connection between the second and
third strands, the primary authors from both strands acknowl-
edge the significant influence of John Edwards [see Martin
and Odell [71] (p. xiii) and Partridge [88] (p. x)].

6.1 Materialization strand

This strand was started by two papers published in the mid-
1990s. The firstwasGoldstein and Storey [40] and the second
Pirotte [98], which references the first. Other relevant papers
include some written by Goldstein and Storey [41], Dah-
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chour et al. [26], and Pirotte and Massart [97], each typically
referencing the earlier papers.

This strand has clear links with work on databases; the
early papers frame the discussion in terms of data abstrac-
tion, though they also make clear they see their work in terms
of semantic data modeling. In later papers, the term “abstrac-
tion” is used without the data modifier and the papers framed
as conceptual modeling.

Goldstein and Storey [40] explain that the name “mate-
rialization” was chosen because the more natural name
“instance-of” was “commonly used for other special rela-
tionships” noting that it is intended to “model a situation that
occurs frequently in the real world and has important impli-
cations for database design.” In this and the other papers, the
term “realization” is often used as an alternative to “materi-
alization.”

Goldstein and Storey [40] examine the nature of the mate-
rialization relationship. They introduce (p. 836) two levels:
conceptual and concrete. Materialization is defined as a rela-
tion between conceptual and concrete objects, for example
between the conceptual “models of cars” and the concrete
“individual cars.” From a mathematical perspective, these
two levels are roughly isomorphic to first- and second-
order sets, and the materialization relation between them
is a member-of relation between the levels: first-order-set-
member-of-second-order-set. However, given the framing of
these links as conceptual and concrete, it is clear that a set-
theoretic interpretation is not intended.

Explaining how these relate and what this relationship
implies is one of the challenges the series of papers addresses.
Where a materialization relation exists, some properties are
shared between the levels. There are also some formal con-
straints (p. 837); every instance of the concrete object must
materialize one and only one instance of the conceptual
object and the instances of the conceptual object completely
partition the instances of the concrete object. From these, it
can be inferred that from a formal perspective, materializa-
tion identifies a single privileged set-theoretic partition of the
second-order set into first-order sets. It is not clear how this
privileged partition is identified. However, this interpreta-
tion is challenged by Fig. 2 which contain several three-level
materialization hierarchies, and no indication is given which
levels as conceptual and which concrete, and whether the
intermediate levels are both conceptual and concrete.

Pirotte [98] move the analysis along by describing mate-
rialization hierarchies that these are partially ordered by
abstractness, saying, for example, “cascades of materializa-
tions, where themore concrete class ofmaterialization is also
themore abstract class of anothermaterialization, and so on.”
Illustrating its roots in database analysis, a prime motivation
is characterizing how the attributes are inherited along the
materialization cascade. The constraint on the cascade is that
“… it appears that a necessary and sufficient condition for

Fig. 17 Missing conceptual hierarchy

materialization to be possible between two classes is that they
satisfy the partial order for abstractness.” What this ordering
does not provide is a formal mechanism to characterize the
stratification of classes such as that provided by the intransi-
tive member relation.

Pirotte and Massart [97] offer a way to reinterpret the
earlier conceptual approach in realist terms. In a section enti-
tled “Real-WorldModeling,” categories are introduced as the
extensional counterparts of concepts, and referring to the ear-
lier paper [98], statesmaterialization is “a binary relationship
between a class of categories and a class of more concrete
objects analyzed in terms of these categories.” The paper also
proposes (p. 145) a way of treating the instances of the class
of categories and subclasses of the class of concrete objects
as two facets of a single construct shown in the extract from
its Fig. 5 below (Fig. 17). This is broadly similar to clabjects
of Atkinson [6].

From the classificationperspective of this survey, given the
way in which the conceptual and concrete classes are shown,
one interesting omission is a hierarchy for the conceptual
objects. Figure17 shows an extract from Fig. 5 of Pirotte and
Massart [97] with a clear concrete class hierarchy on the
right-hand side. The figure highlights that there is nothing
directly linking the conceptual classes on the left-hand side.
This is the same requirement as linking the hierarchies of
ranks in the Linnaean example. For this, one needs sufficient
expressivity to recognize sets of subset relations.

6.1.1 Example benchmark

Thematerialization papers have a narrow focus on themateri-
alization relation rather than the wider classification pattern.
Nevertheless, the materialization pattern is clearly intended
to be a foundational component of the classification pattern,
as the papers’ examples illustrate.

From one perspective, these examples are similar to the
Linnaean taxonomy. There is a structure where larger classes
are broken down into smaller classes. There are some impor-
tant differences though. Crucially, materialization is not able
to represent the Linnaean ranks as ranks. For example, there
is no way to stipulate that the classification has a fixed num-
ber of ranks, or indeed name those ranks or group them into
a classification scheme. Finally, as noted in the last section,
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Fig. 18 Modeling a single rank using materialization

there is no way to show the hierarchy between the ranks.
With these resources, one could represent only one rank, for
example only Model A or Model B in Fig. 18, but not both.

6.1.2 Mathematical framework

The materialization papers imply that the formal struc-
ture underlying materialization is a simple partition. The
materializing class of categories (the “concept”) partitions
the materialized class of concrete objects into disjoint
subclasses.

The materialization papers appear to assume that there
is only one materializing class of categories for a class of
concrete objects. A class X is given a materializing class
typically named “Types of X”; for example, “Family cars”
is given a materializing class “Types of family cars.” This
naming convention implies that there is a single privileged
materializing class; otherwise, one would expect “Type” to
be qualified. But there is no explanation of why this is so,
or how to pick out this privileged class from the significant
number of potential partitions. The single privileged partition

also makes it difficult to handle the requirement for multiple
classification.

Table1 provides a simplified mapping between the mate-
rialization objects and their equivalent mathematical objects.
There is not a consistent use of terms across the materializa-
tion papers, so the first paper [40] is taken as the reference.

6.2 Ptech-UML: Odell-powertype strand

A short time after the first materialization paper was submit-
ted and before it was published, Odell started to put forward
a view of what he named “powertype” in a series of papers
[71–73,80,81], based upon his work at Ptech Inc. There is
no indication in these that Odell was aware of the materi-
alization work. Together, these papers give an extended and
relatively informal picture of the Ptech-Odell-powertype.

Odell’s work was subsequently adopted by UML—while
Odell was co-chair of the Task Force responsible for UML—
and then further developed. UML can be regarded as the
current owner of this strand, which here will be called
Odell-UML-powertype, as the developmentwasmostly done
by Odell. However, there are important formal differences
between the original Odell view and the subsequent UML
development; these stages are reviewed as Odell-powertype
and UML-powertype below.

At the same time as the UML development, Odell’s
work on powertypes was picked up by a couple of authors
Henderson-Sellers and Gonzalez-Perez [50,51] who were
dissatisfied with UML’s treatment of higher-order types.
They developed an alternative view, based upon objects
called “clabjects,” into which they fitted their development
of the Odell account.

These three stages—Odell, UML, and clabjects—are dis-
cussed below.

Table 1 Mapping
materialization objects to their
equivalent mathematical objects

Materialization object Equivalent mathematical object

Concrete manifestation Ur-element

Conceptual entity First-order-set

(Types of) concrete manifestations First-order-set

(Types of) conceptual entities Privileged partition of a first-order set (a
second-order-set)

Classification (inverse = instantiation) Ur-element-member-of-first-order-set

Materialization First-order-set-member-of privileged partition

Inclusion (also generalization, inverse = specialization Subset-of

Partitioning based upon property values Partition of S

* Not recognized * Set

* Not recognized * Member-of

* Not recognized * Subset-of

* Not recognized * Powerset
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Fig. 19 Tree species based upon [72]

6.2.1 Ptech-Odell-powertype

Odell notes [72] (p. 247) that there is an emerging recognition
of this structure writing “… a particularly complex expres-
sion of categorization called power types is not addressed
by traditional object structure approaches.” He subsequently
notes that though previously unrecognized, it is common-
place, writing “Most systems have numerous power types,
which are either unnoticed or misunderstood.”

In part, his approachwas driven by an aspiration to explain
the nature of the relationship. Hence, he characterizes his
view using a prototypical example, Tree Species [72]—this
is reconstructed in Fig. 19.

However, this informal approach means that some analy-
sis is required to determine the formal structure. In Martin
andOdell [71] (p. 500), there is a small section on powertype,
where it is defined as all of the subtypes of the powertyped
type, which looksmuch like the set-theoretic powerset. How-
ever, in all subsequent work, a weaker definition is used. In
[72] (p. 247 and repeated in [81], p. 28), powertype is defined
as follows: “A power type is an object type whose instances
are subtypes of another object type.” This has marked simi-
larities to the second half of the earlier definition of powerset
“All members of ℘(T) are subsets of T.” Taking it at face
value, this implies that an Odell-powertype is a powerset-
subset.

Further analysis reveals there are two more formal con-
straints not mentioned in the definition that can be gleaned
from the papers. Firstly, the Odell papers say that the Odell-
powertype is a partition [72] (p. 255); every partition is an
Odell-powertype and every Odell-powertype a partition. The
equality of partition and powertype is stated without expla-
nation. Martin and Odell [72] (p. 89) states “A type partition
is a division (or partitioning) of an object type into disjoint
subtypes.” It makes clear (p. 91) that “Each partition applies
to all instances of an object type.” From this, it can be inferred
that Odell’s partitions (and so the Odell-powertypes) are set-
theoretic partitions.

Fig. 20 Linnaean ranks—an example of multiple Odell-powertypes

Odell (p. 91) subdivides type partitions into complete and
incomplete partitions based upon how they are specified in
the model, defining them as follows: “A complete partition is
a partition with all of its subtypes specified” and “An incom-
plete partition is a partition with a partial list of its subtypes
specified.’ Though it is not completely clear, a reasonable
inference from the use of the phrase “partial list” is that the
distinction is epistemic, that is, it is about what is known
rather than what exists. In other words, it is about which of
the partitions subtypes are “specified” in the diagram, not
whether they are in the partition. Hence, the same partition
can appear in one model as complete, with all its subtypes
specified and in another with only some specified. Whether
it is completely or incompletely specified is about what the
model “knows,” not what is actually in the partition. So this
complete/incomplete distinction is immaterial from an onto-
logical perspective.

Martin and Odell [72] (p. 254) note that a type can have
multiple Odell-powertypes. It provides an example of an
insurance policy that has two powertypes: one partitioned
by “policy coverage type” and the other by “insurance line.”
This ties in with earlier comments by Martin and Odell
[72] (p. 254) that types can have multiple partitions; if
Odell-powertypes are partitions and types can have multiple
partitions, then partitions can, by definition, have multiple
Odell-powertypes. This fits with the mathematical sense of
partition, where sets can have multiple partitions—as noted
earlier, in set theory this is a function of the number of ele-
ments, given by the Bell Number.

In terms of the Linnaean Classification example, the levels
of classification would be multiple Odell-powertypes of the
type “Natural Things”—as shown in Fig. 20—as each level
is a disjoint partition at a finer level of detail.

As noted earlier, in modeling there is a preference for a
declarative style where operations are reified as relations.
A number of diagrams have a link between the type and
the Odell-powertype, and this is labeled “is classified as.”
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However, there is little further characterization. A possible
interpretation is the Partition-Of relation described above.

Finally, while there are no examples in the papers, there
is also nothing that suggests that there cannot be higher-
order powertypes—powertypes of powertypes (or subtypes
of powertypes).

6.2.2 Initial mathematical framework

Comparing the Odell-Powertype with the mathematical
framework definition of powerset in this paper, it is possi-
ble to note that there are a number of important differences.
Firstly, the incomplete “definition” conforms to only one half
of the definition of a powerset; that its instances (members)
are subtypes (subsets) of the classified type. It does not con-
form to the other half, which would require every subtype
(subset) to be a member-of the powerset. Taken by itself,
thiswouldmake theOdell-powertype equivalent to powerset-
subset—this, given the use of the name “powertype,” is an
example of semantic drift. However, the additional constraint
of theOdell-powertype being a partition of the classified type
makes it a partition—a particular type of powerset-subset.

It is interesting to speculate why the full-blown power
of powertype was not clearly recognized and adopted, par-
ticularly given its brief use in [71] noted earlier. A likely
possible explanation is that there were not the resources to
explain what a powertype is ontologically; what it is in terms
of objects in the real world.

6.2.3 Comparing the Odell-powertype and the
materialization strand

None of theOdell papers reference thematerialization strand.
However, a latermaterialization paper byDahchour et al. [26]
makes the connection. It refers to Odell [81] and says the
Odell-powertype is the abstract class of a materialization,
while the classified type is its concrete class. This accords
with the analysis conducted in this survey. Dahchour et al.
[26] note that the materialization refers to the relationship,
whereas the Odell-powertype refers to the related object. It
also notes that Odell does not use a two-faceted construction
to distinguish between the instances of the powertype (the
object facets) and the subtypes of the concrete class (the class
facets); the merits or otherwise of separating the object and
class facets are beyond the scope of this survey paper.

6.2.4 UML-powertype

As noted earlier, the “powertype” described in the evolving
UML Specifications [83–85], which here is called UML-
powertype, is effectively a continuation of the earlier Odell
work. The specifications contain much of the same text and
examples asOdell’s papers. However, its formal structure has

evolved in a couple of ways relevant to this survey, giving it
a stronger set-theoretic basis. These are the introduction of a
GeneralizationSet, and a shifting of the originalOdell distinc-
tion of complete and incomplete partitions from epistemic
to ontic (where the knowledge—episteme—is incomplete
rather than the partition itself) as part of a wider and finer
classification of powertypes.

The specification addresses the question of what the rela-
tion between a UML-powertype and its type is through the
use of a GeneralizationSet. It defines this [83] (p. 75), as “a
particular set of Generalization relationships that describe
the way in which a general Classifier (or superclass) may
be divided using specific subtypes.” In terms of the mathe-
matical benchmark used in this study, this is a set of subset
relations—hence, a subset of the subset relation. This can
be related to the UML-powertype through the use of a pow-
ertypeExtent relation. This is shown in Fig. 21, which also
shows a number of other things. Firstly, it makes the Gen-
eralizationSet explicit, using an ellipse to do this—in the
UML notation, it is not explicitly shown as a separate icon,
and secondly, the implied underlying relations. The rela-
tion between the type and its powertype is implied by being
on the head end of all generalizations that are members of
the GeneralizationSet that has a powerExtent relation with
the powertype. The relation between a powertype and its
instances is implied by being on the tail end of a gener-
alization that is a member-of a GeneralizationSet that has
a powerExtent relation with the powertype. As the fig-
ure illustrates, these implicit relations can be inferred—this
inference is a kind or powerset-member closure referred to
above.

One can see the OMG working toward formalizing this.
In OMG UML 2.1 [83], this inference is explained in a tree
example. In OMG UML 2.5 [85], a more formal description
is given: “there is a 1-1 correspondence between instances of
the powertype and specializations in the GeneralizationSet,
so that the powertype instances and the corresponding Clas-
sifiers may be treated as semantically equivalent. How this
semantic equivalence is implemented and how its integrity is
maintained is not defined within the scope of UML.”

There is a constraint (p. 72) that eachUMLGeneralization
can only belong to one GeneralizationSet. This is described
by comments such as: the set “represents an orthogonal
dimension of specialization of the general Classifier.” This
constraint is specific toUML-powertypes; it is notmentioned
in the earlier Odell papers implying a constraint across all the
UML-powertypes associated with a type, i.e., they need to
be disjoint. The reason for this constraint is not explained.

The specification clarifies the historically intended rela-
tion betweenUML-powertype and the set-theoretic powerset
saying “The notion of power type was inspired by the notion
of power set.” However, it seems to have an incomplete
understanding of the “notion of power set” stating incorrectly
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Fig. 21 GeneralizationSet explicit and implicit structure

that “A power set is defined as a set whose instances are sub-
sets.”

The second relevant change is a shift away from the
original Odell distinction of complete and incomplete par-
titions from epistemic to ontic—using set-theoretic notions.
The GeneralizationSet (ibid. pp. 76–77) is given Boolean
attributes “isCovering,” and “isDisjoint,” where this actu-
ally classifies the related UML-powertype rather than the
GeneralizationSet. The descriptions of these markings make
clear that these are ontic; that they refer to the members
of the powertype, not what is known about the powertype.
It also makes clear through examples that these are the
set-theoretic notions of cover and disjoint described earlier
in the paper. This allows UML-powertypes to be of four
sub-types, rather than just one partition, that is, a disjoint
cover.

6.2.5 Example benchmark

The UML-powertype, like Odell-powertype, is able to meet
some of the requirements for the example; for example, each
of the five Linnaean ranks is a UML-powertype of the type
Natural Things. And, like the Odell-powertype, it can meet
requirements outside the scope of the example, such as mul-
tiple classification.

There are some differences. The use of GeneralizationSet,
where there are layers of powertypes, leads to some awkward
diagramming. Each of the subtypes needs to have a General-
ization link to the classified type, which in turn needs to be a
member-of the powertype’s GeneralizationSet. This leads to
a proliferation of Generalizations that would be unnecessary
if the subtype could be directly associated with the power-
type. These “extra” generalizations are shown for the Species
rank in Fig. 22. This pattern is repeated for each rank.

A difficulty arises when trying to capture the relation
between the ranks. This, as noted earlier, needs to work as a
type-level schema linking the higher rank to the lower rank.
UML does not have the resources to do this.

There is an interesting feature of the UML-powertype
range constraint. If one assumes that the Linnaean Ranks are
the full set of powertypes (i.e., there are no other powertypes
of Natural Things), then by the UMLGeneralizationSet con-
straint mentioned above, the (implicit) set Linnaean Ranks
is disjoint—as shown in Fig. 23.

The way the UML GeneralizationSet constraint tracks
the disjoint Linnaean structure suggests a motivation for the
UML constraint; it could be intended to capture the disjoint
requirement in strict taxonomies such as the Linnaean clas-
sification. However, as it is currently constructed, it does not
allow for either less strict classification schemes or multi-
ple schemes (strict or otherwise) that overlap. Furthermore,
where the Linnaean Ranks are not the only powertypes, there
is no mechanism for UML to group the ranks into a power-
type.

This is an interesting example as it illustrates the different
roles that the powerset and powerset-subset patterns can play
in a classification system. In both Odell and UML, there is
a pair, classifying type-classified type. Linnaean Ranks look
like a classifying type as its instances (ranks) are types that
classify. However, to get this to work, one needs to introduce
a supertype of the ranks, as the classified type. From the
earlier analysis, this is known as Linnaean Classifications.
While this can be introduced in UML, there is no way of
constraining it to subsets of Natural Things—as UML does
not have access to set-theoretic powerset.

In addition, UML has no way of representing the ordering
between the ranks as it lacks access to a sufficient range of
formal structures, which are characterized using set-theoretic
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Fig. 22 Example—proliferation of generalizations

Fig. 23 Implied GeneralizationSet constraint

objects in this paper. In the benchmark analysis, Natural
Thing Powerset is used to do this, linking it to Natural Thing
with a powertype-of relationship—see Fig. 9. It is difficult to
construct the pair as UML has no candidate for the classified
type; the second-level pattern is not an exact copy of the first-
level pattern. One might wish to regard the Natural Thing

Powerset as the classified type—but UML does not have
access to set-theoretic powerset. Natural Thing Powerset has
a vast number of subsets (Natural Thing Powerset Powerset
has a vast number of instances), and the five Linnaean Ranks
represent a very small percentage. The underlying issue is
that, at this second level, Linnaean Ranks play a different
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Table 2 Mapping Odell-UML-powertype objects to their equivalent
mathematical objects

Odell-UML-powertype object Equivalent mathematical object

Object Ur-element

Object type Set

Powertype (Odell) Partition

Is classified as (Odell) Partition-of

Powertype (UML) Powerset-subtype

Subtype/supertype Subset-of/superset-of

Classify Member-of

Partition Partition

IsCovering (UML) Cover-of

IsDisjoint (UML) Disjoint set

Sub-type Subset-of

* Not recognized * Powerset

organizing role to the first level. What it is organizing is a
series of coarser and finer partitions of the first-level sub-
types.

6.2.6 Mathematical framework

In terms of the mathematical framework, UML-powertype
is a kind of powertype-subtype (a set of subsets). This is
closer to the letter of the original definition and more gen-
eral than the Odell-powertype. However, as noted above,
there is a restriction on the range of UML-powertypes a
type can have. If the set of UML-powertypes of a type
is called a UML-powertype-set, then this set is a dis-
joint subset of the mathematical powerset of the underlying
type.

As it can be seen, the formal mathematical resources
that were introduced are sufficient to characterize UML-
powertype-set as disjoint. As noted above, there are cases,
such as the Linnaean Classifications example, where a UML-
powertype-set is disjoint. However, it seems odd to make
disjointness mandatory. This would suggest that the require-
ment is for the ability to record that some UML-powertype
sets are disjoint, but not force them all to be.

Table2 provides a simplified mapping between the Odell-
UML-powertype objects and their equivalent mathematical
objects.

6.2.7 Clabject-powertype

This stage can be seen as emerging from both the Odell-stage
and the materialization stage. It is in this section because it
explicitly builds upon the Odell approach; however, it also
shares the materialization strand’s concerns about how to
handle sets that are members of other sets, proposing clab-

jects as a solution (a topic outside the scope of this paper).
Hence, this stage is named “clabject-powertype.” It is rep-
resented by a series of papers by Henderson-Sellers and
Gonzalez-Perez [42,43,50–52] and the ISO standard 24744
[58,59]. Its focus is on the use of powertypes for metamod-
eling rather than specifically on classification.

The “clabject-powertype” is called a “powertype pat-
tern” and defined “as a pair of classes in which one of
them (the powertype) partitions the other (the partitioned
type) by having the instances of the former be subtypes
of the latter,” see Gonzalez-Perez and Henderson-Sellers
[42]. Technically, more precisely, the powertype relation
is an ordered pair, as the order of the classes is material.
As far as it is possible to tell, the clabject-powertype is,
in set-theoretic terms, a partition. This is equivalent to the
Odell-powertype, but not the UML-powertype which is not
so constrained. These two are referred to directly before the
definition quoted above, but the distinction between them is
not noted.

The definition of Gonzalez-Perez and Henderson-Sellers
[42] states that the instances of the powertype are sub-
types of the powertyped type. However, an earlier paper
by Henderson-Sellers and Gonzalez-Perez [51] takes a dif-
ferent stance, claiming that these are different facets of
a single clabject (and so different), which is neither an
instance nor a subtype. This is a similar position (as the
paper notes) to that found in some of the materializa-
tion papers that share their concerns about how the “one
over the many” (noted earlier in the discussion on sets)
manifest themselves in higher-order types. This concern
as noted before is outside the scope of this survey paper,
and from a formal benchmarking perspective, the facets
can be collapsed into a single object for comparison pur-
poses.

As in the materialization papers, the examples (e.g., Task
and TaskKind) are of a single powertype simply qualified
with “…type,” implying a single preferred set-theoretic par-
tition. There is no mention of multiple powertypes as found
in the Odell papers.

6.2.8 Example benchmark

It is not possible to capture the Linnaean example using
this “powertype.” When only a single preferred powertype
is allowed, then no more than one rank can be represented.
It is not clear how the “Linnaean Ranks” can be explicitly
represented with only the formal resources of set-theoretic
partition. There is no mechanism for representing the rela-
tionship between the ranks. Indeed, the denial of the identity
of the instance of the powertype and the sub-types of the
powertyped type (in the early paper) introduce an additional
layer in capturing this. Fig. 24 shows two ranks—genera and
species—and the clabject facets. The classification pattern
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Fig. 24 Clabject faceted ranks

Table 3 Mapping clabject-powertype objects to their equivalent math-
ematical objects

Clabject-powertype object Equivalent mathematical object

Object (not a clabject facet) Ur-element

Class (facet in a clabject) Set

Instance-of Member-of

Subtype Subset-of

(Clabject) powertype (Privileged?) partition

Partition (Privileged?) partition-of

* Not recognized * Powerset-subtype

* Not recognized * Powerset

has a relationship between the two ranks that describes the
sub-type relations that hold between the class-facets related
to the object-facets that are instances of the ranks.

6.2.9 Mathematical framework

The clabject-powertype is a partition, and there is strong cir-
cumstantial evidence that it is, like materialization, a single
preferred partition.However, again likematerialization, there
is no explanation of which of the many possible partitions is
the preferred partition. However, see Henderson-Sellers and
Gonzalez-Perez [52] where discriminants are introduced to
organize partitions.

Table3provides a simplifiedmappingbetween the clabject-
powertype objects and their equivalentmathematical objects.

6.2.10 Semantic drift

The comparisons with the mathematical framework have
made clear that the term “powertype” in the Odell-UML
strand has been subject to semantic drift. It is used in
this strand for variously set-theoretic partition and kinds of

powerset-subset. Though materialization describes a similar
type of mathematical object, as it adopts a new term, it is not
a case of semantic drift.

It is not clear how aware the participants are of the
semantic drift. There are clear cases of claims that the
sense intended here is similar to the mathematical sense,
but nowhere are the differences raised. In the case of UML,
there is its mistaken definition, noted above, and the claim
that it is using the mathematical sense. It should be noted
that this semantic drift is confined to this strand and has not
happened, for example, in the mathematics adopting com-
munities.

This semantic drift has been noted byHalpin [48]. He says
(p. 5) “If the name ‘powertype’ derives from the notion of
power set (the power set of a set A is the set of all subsets
of A), the term is misleading, as the powertype TreeSpecies
excludes many instances in the power set of the set of trees
(e.g., the null set, the set of all trees, and many other tree
sets)’. For this reason, the term “higher-order type” seems
more appropriate than “powertype.” The basic point is well
made, but the proposed term “higher-order type” is too gen-
eral as it includes incomplete partitions, so partition and
powerset-subset would be more accurate.

6.2.11 Clabject’s approach to the “one over many”
question

The clabjectists belong to a groupwithin the conceptualmod-
eling community that have a profound reluctance to accept
the Cantorean resolution that objects can be both one and
many. Hence, they take the view that there are no such things
as types of types and have developed an alternative solution.

This appears a good example of how semantical, rather
than formal, concerns have framed and so influenced the
direction of the analysis. However, more analysis is required
to understand the source of the semantical concerns (i.e.,
as noted below, the potential subject of further work). The
clabject approach is framed within a multi-level model-
ing framework, where types are organized into levels. This
framework is not suited to Cantorean sets; this is a strong
motivation for looking for a different approach to power-
types.

6.2.12 A Procrustean approach?

This, in turn, could raise Procrustean concerns. In Greek
mythology, Procrustes right-sized people to his iron bed,
either stretching them or cutting off their feet. More analysis
is required to establish whether something similar is happen-
ing here, whether the proposed solutions to the “one over
many” questions are reflections of a commitment to a multi-
level modeling framework.
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Fig. 25 class_of_classification and class_of_class schema

6.3 Powertype in BORO and ISO 15926-2

This strand comes from a tradition of modeling built upon a
foundational, four-dimensional (4D), extensional, ontology.
The use of an extensional ontology provides an explanatory
context within which themapping to extensional set theory is
straightforward for all the mathematical objects under con-
sideration. This significantly reduces the explanatory burden
associated with the adoption of the full formal structure.

The core foundation was originally developed by a team
of KPMG consultants working in the late 1980s and early
1990s (these projects are described by Partridge [88] (pp.
xiii–xiv). In the early 1990s, the team working on EPISTLE
(European Process Industries STEP Technical Liaison Exec-
utive) became aware of this work and amended their data
model to accommodate 4D extensional elements. This was
standardized as ISO 15926: Part 2. It has been extended in
various ways, including in the work of West [118].

The results of the earlier work were documented in Par-
tridge [88] and a series of further papers by Daga et al.
[24,25], Lycett and Partridge [69], Partridge [87,89–92], Par-
tridge and Stefanova [93–95] in an approach currently named
BORO.More recently, this approach has been adopted by the
IDEASGroup (www.IDEASGroup.org) and used to develop
enterprise architecture frameworks in theUSA (DODAF2.0)
and UK and Sweden (MODEM).

From this paper’s perspective, it makes sense to review
ISO 15926-2 and BORO as the twomain sub-strands as these
illustrate the two main different formal structures within the
strands.

6.3.1 ISO 15926 powertype

ISO 15926’s full title is “ISO 15926-2:2003 - Industrial
automation systems and integration—Integration of life-
cycle data for process plants including oil and gas production
facilities—Part 2: Data model.” As the full name indicates,
it was published as an ISO standard in 2003; however, the
details of the model were largely finalized in the mid-1990s.
The standard contains a model that is described using a stan-
dard data modeling language for product data, EXPRESS,
which has been standardized in ISO 10303-11. This extends
the expressivity of the model; for example, it supports key-

words such as TOTAL_OVERwhich can be used to represent
cover-of and SCHEMA declarations which can provide par-
titioning (partition-of).

The standard does not use the term “powerset” or any
of the traditional alternatives; instead, it uses the prefix
“class_of_” to indicate a powerset. At the foundation level
of its hierarchy is an object “class,” which corresponds to
the set-theoretic “set.” Below this in its class (set) hierar-
chy it has the object “class_of_class.” This is defined as “A
[class_of_class] is a [class] whose members are instances
of [class]”; in other words, it has as instances all subsets of
“class.” From the set-theoretic perspective, this is the pow-
erset of “class” (set). The pattern (or schema) is shown in
Fig. 25. (As currently formulated, this leads to technical prob-
lems as described below.)

It also explicitly has a relation, class_of_classification,
which is (in set-theoretic terms) the powerset of all member-
of relations; this has as members all the individual powerset-
of relations. The mapping from the rest of the ISO 15926
objects to their mathematical equivalent is relatively straight-
forward.

6.3.2 Mathematical framework

In terms of the mathematical framework, all its objects have
equivalents as shown in the simplified mapping in Table4.

There is however a technical issue with the way ISO
15926 formalizes the set theoretic powerset. In the standard,

Table 4 Mapping ISO15926 objects to their equivalent mathematical
objects

ISO 15926 object Equivalent
mathematical object

Class Set

Classification Member-of

Specialization Subset-of

class_of_ … … powerset

class_of_class Set powerset

class_of_classification Powerset-of

class_of_specialization Member-of powerset

union_of_set_of_class Union

intersection_of_set_of_class Intersection
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Fig. 26 class_of_natural_things

Fig. 27 classe_of_specialization

“class_of_class” (powerset of class) is shown as a subset-of
“class” (set). This is a technical impossibility. Powersets are
necessarily larger than the original set; this is the property
used in Cantor’s diagonalization proof. So the “powerset of
class” is necessarily larger than “class”; hence, it cannot be
a subset-of (or member-of) “class.” The question of how to
restrain the scope of powerset is awell-studied area of set the-
ory with a number of technical solutions. One option adopted
by ZF set theory is to avoid the universal set altogether. One
of the more radical alternatives proposed by Church [18] is
to have a universal set and a weakened notion of powerset,
where weak powerset is the set of singletons of the original
set.

6.3.3 Example benchmark

The mapping in Table4 shows ISO 15926 has sufficient set-
theoretic expressiveness to handle all aspects of the Linnaean
example. Given the straightforward mapping, the details can
easily be worked out from the formalization of the example
given earlier. For example, the class_of_classification and
class_of_class schema (Fig. 25) enables it to capture the pow-

erset ofNatural Things—shown in Fig. 26—and the powerset
of the powerset of Natural Things.

It has the objects “specialization” (set-theoretic “subset-
of”) and “class_of_specialization” (set-theoretic “subset-of
powerset”), which enables it to capture the relations between
the ranks, as shown in Fig. 27.

6.3.4 BORO powertype

The first published account of BORO (originally called REV-
ENG as an acronym for REVerse ENGineering) appears
in the writings of Partridge [88]. This used a terminology
based upon the term “class.” During subsequent develop-
ment, most lately illustrated by the International Defence
EnterpriseArchitecture Specification for exchange (IDEAS),
this has shifted to a terminology based upon the term “type.”
For consistency, in this paper, the original “class” terminol-
ogy shall be used.

At the foundational level of its hierarchy is an object
“class,” which corresponds to the set-theoretic “set.” Pow-
erclasses are defined (p. 307) in the usual powerset way, and
the link to powerset noted: “These classes are a common

123



Formalization of the classification pattern

Table 5 Mapping BORO objects to their equivalent mathematical
objects

BORO Object Equivalent
mathematical object

Class Set

Class-member Member-of

Super-sub-class Subset-of

Power class Powerset

Power class tuples class Powerset-of

Intersection Intersection-of

Fusion Union-of

Distinct Disjoint

Partition Partition-of

feature in mathematical set theory, where they are known as
powersets and defined as the set of all sub-sets of a set.” There
is no restriction on the level of powerclasses; indeed, there
are several examples of higher-order powerclasses. There is
no semantic gap between the BORO term powerclass and the
set-theoretic term powerset. Similarly, there are many exam-
ples illustrating the usefulness of multiple classification. The
mapping from theBOROobjects to theirmathematical equiv-
alent (in below Table5) is even more straightforward than
with ISO 15926.

6.3.5 Mathematical framework

The objects in the mathematical framework all have equiv-
alents. Table5 provides a simplified mapping between the
BORO objects and their equivalent mathematical objects.

6.3.6 Example benchmark

BORO has sufficient set-theoretic expressiveness to handle
all aspects of the Linnaean example. The example is actually
described inPartridge [88] (p. 206 and inFigure 9.24), though
not to the same level of detail as in this paper. However, given
the straightforward mapping to the set-theoretic benchmark,
the rest of the details can easily be worked out from the
formalization of the example given earlier.

6.4 Implementation strands

As a number of the papers surveyed have mentioned, the
classification pattern is ubiquitous. Partridge [88] provides
a number of examples re-engineered from legacy systems.
So it is not surprising that some form of the pattern should
emerge in communities working closely with implemented
systems. Two strands are briefly surveyed: one associated
with entity modeling and the relational database community,
and the other associated with the object-oriented community.

The connections with these and earlier strands have been
noted in the literature, e.g., Dahchour et al. [26].

6.4.1 Entity-relationship (ER) modeling

The entity-relationship (ER) modeling community has its
roots in Chen’s entity-relationship model [17] and emerged
to support the design of physical databases, typically rela-
tional databases.Within this community, there is little formal
description in the literature, and it was necessary to infer the
formal structure from their informal descriptions. As in other
communities, this community’s understanding of the classifi-
cation pattern has developed over time, and this is reflected in
the literature. This is reflected particularly clearly in a series
of books by Silverston [107–110]. In the initial book, there
is only a brief mention of a simple pattern. In the last book in
the series, a chapter is devoted to the classification pattern,
in which (p. 187) the Linnaean classification is offered as a
prototypical example.

In Chen [17], there was talk of classifying: “Entities are
classified into different entity sets such as EMPLOYEE,
PROJECT, andDEPARTMENT” (p. 11).However, therewas
no mention of classification of these entity sets into types,
no mention of EMPLOYEE-TYPE, PROJECT-TYPE, or
DEPARTMENT-TYPE.As this kind of classification became
commonplace in implemented systems, it also emerged into
the literature in ER modeling, for example Hay [49] (p. 44).

In this early literature, there was a simple notion of type.
Although not explicitly stated, it appears to be assumed that
an entity can have only one type. One indication is Hay [49]
(p. 21) and Silverston [108] (p. 9) both explicitly describe
naming the Type by adding the “Type” suffix to the classi-
fied entity type’s name; for example, constructing the name
“Organization Type” from “Organization.” Although not
stated, it is also reasonably clear that the types cannot them-
selves be typed—so, for example, there are no Organization
Type Types. There is no explanation why these constraints
exist.

Even at this early stage, it is clearly stated that the instances
of the Type entities are ER-subtypes of the classified entity.
However, there are constraints on what can typically be
an ER-subtype, see Silverston [108] (p. 10); the “subtypes
within an entity should represent a complete set of classi-
fications (meaning that the sum of the subtypes covers the
supertype in its entirety) and at the same time be mutually
exclusive of each other. . .”. From this, it can be inferred that
not all the subsets of the entity are ER-subtypes; there is a pre-
ferred selection and they partition the supertype entity. There
is no mention of how these preferred subtypes may be identi-
fied; it appears to be assumed that this is intuitively obvious.

There is some discussion of the different ways of repre-
senting subtypes, reflecting different approaches to physical
implementation. Three choices are typically offered, see Hay
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[49] (pp. 44–45); they can be represented explicitly as sub-
types, or indirectly through either a type entity or as the values
of an attribute.

From a formal structure perspective, these initial simple
ER types are similar to Odell-powertypes—partitioning the
classified entity—with the added constraint, seen in other
communities, that there is a single preferred partition.

In the later literature, there is a more sophisticated notion
of classification. In Silverston and Agnew [109], three levels
of classification pattern are identified ranging from sim-
ple (Level 1) to more sophisticated (Level 3). The Level
2 classification pattern allows (like the Linnaean classi-
fication) for multiple layers of classification—but (unlike
the Linnaean classification) not for fixed stratified lay-
ers. It also allows for “temporary” classification, where
an entity is only classified as belonging to a type for a
period of time. This is done by making the classification
relationship have a validity period rather than as in the
BORO-type approaches classifying a stage of the entity
[88] (Partridge p. xx). In a note on Silverston and Agnew
[109] (p. 199), it is stated that classifications can be “mutu-
ally exclusive” or an entity can have many classifications
at one time, mirroring the shift from Odell-powertypes to
UML-powertypes which also introduced multiple classifica-
tion. The Level 3 pattern introduced the notion of ENTITY
CATEGORY TYPE, which classifies the classifications—
an example would be PRODUCT CATEGORY TYPE. This
corresponds with the second-order type, Linnaean classifica-
tions, in the example.

Within basic Level 3, there is a constraint on the various
classification relations that any child classification can only
have one parent classification. This results in a tree structure.
A second Level 3—Classification Pattern with Rollups and
Schemes—is introduced which allows for a many-to-many
lattice structure.

While this literature does not contribute much to the
formalization of the classification pattern, it is useful in show-
ing how the understanding of the pattern has grown and is
extremely useful in identifying the requirements that busi-
ness systems have for the pattern. The examples for Level
3 patterns show that the Linnaean classification structure
only illustrates a portion of the requirements—there is also
a requirement for multiple classifications; lattice classifica-
tion; multiple classification types; temporary classifications.
Hence, this establishes that the Linnaean Classifications
example represents a basic requirement, rather than a com-
plete one.

6.4.2 Object-oriented patterns (minor)

Within the object-oriented (OO) community, patterns are
general reusable solutions to a commonly occurring prob-
lem within a given context in software design. As such, they

are often abstracted from a number of existing implementa-
tions rather than designed from scratch. Woolf and Johnson
[119] describe the “The Type Object Pattern” noting that it is
similar to Fowler [37], Coad [20], Hay [49],Martin andOdell
[73]. The description given in Woolf and Johnson [119] and
the other two papers from the OO community—Coad [20]
and Fowler [37]—is at the implementation level, in terms of
OO classes.

Interestingly, Woolf and Johnson [119] give an example
of types of types, noting that the “Type Object pattern can be
nested recursively” (see also Clark [19], Gonzalez-Perez and
Henderson-Sellers [42,43]). This indicates that they perceive
no boundary on the number of levels of types.

The relationship between a type class and its (typed) class
is, in the examples, one-to-many. Given the OO structures,
formally one can introduce a number of type classes. How-
ever, there are no examples of multiple classifications in the
paper. This suggests that the type class is formally a set-
theoretic partition of the (typed) class.

7 Classification formalization landscape

As the survey shows, the current treatment of classifica-
tion in the conceptual modeling community is fragmented
into unconnected strands. While there are some strands that
have developed the full formal expressiveness required for
the selected example, others have not. In this section, the
landscape is characterized in terms of its range of expres-
siveness in two ways. Firstly, attention is given to the formal
expressiveness in terms of the mathematical objects that are
supported. Then, the focus turns to the inappropriate formal
constraints that have emerged. Together, these give an indi-
cation of the development that is required for this area to
consolidate and mature.

7.1 Classification blindness

The analysis has shown that despite the classification pat-
tern’s ubiquity, it took a while for it to be recognized within
the ISE communities. As Henderson-Sellers and Gonzalez-
Perez [52] rather trenchantly observed:

“However, what is important in software engineering
and modeling is that, while most people would readily
discriminate between a tree and a tree species concep-
tually, the same cannot be said for software developers
and modelers - with the exception of a small team who
identified a similar notion in data modeling that they
called materialization.”

As noted earlier, this can be explained, in part, by the
need for “software developers and modelers” to formalize
their implicit notions sufficiently and explain this formaliza-
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Table 6 Formal expressiveness in terms of mathematical objects

Materialization Odell-powertype UML-powertype Clabjects-powertype BORO

Powerset YES

Powerset-subset YES YES

Partition YES YES YES YES YES

Overlapping classifications YES YES

Disjoint classifications YES YES

Cover YES YES

Subset subset YES

Powerset powerset (YES) (YES) (YES) YES

Table 7 Formal expressiveness in terms of example requirements

Materialization Odell-powertype UML-powertype Clabjects-powertype BORO

Multiple classification YES YES (YES) YES

Classifying subsets collection YES

Classifications collection YES

Classifications ordering YES

tion. Hence, it should not be surprising that the formalization
did not emerge fully formed; that it needed to evolve and
mature.

7.2 Formal expressiveness in terms of mathematical
objects

One thread running through the survey is the lack of suf-
ficient formal expressiveness for the kind of classification
system exemplified by the selected example. This lack is
characterized in Table6 in terms of the mathematical objects
that the threads can support; YES indicates the object can be
supported, (YES) indicates it seems formally possible, and a
blank indicates that there is no clear indication that is can be
supported.

7.3 Formal expressiveness in terms of example
requirements

The lack of expressiveness can also be characterized in terms
of the example requirements. There are four main cases:

1. Multiple classifications—Linnaean rank instances
2. Classifying subsets collection—Linnaean classifications
3. Classifications collection—Linnaean ranks
4. Classifications ordering—Linnaean super-rank includes

sub-rank

The main strands are mapped against these in Table7.

7.4 Too constraining formal structures

Finally, in some cases, the lack of expressiveness is best char-
acterized as a too constraining structure. One thread running
through the survey is the adoption of too constraining struc-
tures. There are three main cases:

1. Restricting classification to a single privileged partition.
2. Restricting classification to partitions.
3. Restricting classification to non-overlapping powerset-

subsets.

The main strands are mapped against these in Table8.
Some of the restrictions are more explicable than others.

The restriction to partitions is sensible for some classifica-
tions. However, it is not appropriate for all as, for example,
the OMG [83] makes clear. So it is good to be able to express
this restriction in some case, but it should not be mandatory.

Assuming that the restriction to a partition is accepted,
the further restriction to a single privileged partition is much
less plausible. Maybe in some particular contexts, this kind
of restriction might apply, but it does not apply in general. In
addition, if one restricts oneself to a single partition, it would
make sense to give some idea of what it is. Halpin [48] makes
this point, taking the convention of adding a “Type” suffix as
his target.

“The term “AccountType” is uninformative, because it
does not provide any basis for categorizing accounts.
In principle, any object type such as Account might be
categorized inmany different ways, leading to different

123



C. Partridge et al.

Table 8 Too constraining formal structures

Materialization Odell-powertype UML-powertype Clabjects-powertype BORO

Single privileged partition YES

Partitions YES YES YES

Non-overlapping
powerset-subsets

YES

types of bank account. For example, we could define
an AccountKind {Local, National, International}, an
AccountCategory {Taxable, Nontaxable}, and so on.
These are all categorization schemes, which we may
wish to use in the same model, and names such as
“AccountType” and “AccountKind” don’t inform us at
all about the criterion used by a given categorization
scheme to place accounts into account categories.”

Kent [62] (p. 105) offers a suggestion as to why modelers
are tempted down this route. He thinks it may be the experi-
encewith record-based data structures (a left over from paper
technology) that is clouding the thinking:

“To fit comfortably into a record-based discipline, we
are forced to model our entity types as though they
did not overlap. We are required to do such things as
thinking of customers and employees as always distinct
entities, sometimes related by an “is the same person”
relationship.”

From the perspective of this paper, the particular charac-
teristics of individual strands are not of prime interest. What
is of interest is the general picture that at the current time
there is not a consistent approach to the classification pat-
tern, nor is there an adequate formalization accepted across
the community.

8 Further work

Following the analysis, five areas of related further work are
being considered; these are as follows:

• Large implemented systems survey
• Survey the possible semantics for powertypes
• Higher-order types survey
• Relation between higher-order types and higher-order
logic

• Relation between metamodeling and higher-order types
• Ways of resolving the “one over many” question.

8.1 Large implemented systems survey

Given the apparent ubiquity of the classification pattern, it
is reasonable to assume that this pattern exists in most if

not all large implemented computer systems. Hence, at the
implementation level, the classification patterns must be for-
malized in the systems, though typically without there being
a conscious appreciation that it is the classification pattern
being formalized. It would be interesting to look at these
formalizations to see the range of patterns and the depth of
sophistication.

8.2 Survey the possible semantics for powertypes

Weassumed, for the benchmark, a standard four-dimensional,
possible world semantics. We have raised the issue of the
“one and themany.”However, we did not explore in detail the
possible semantic and ontological issues this raised, instead
focusing on formal questions. This area could be usefully
explored.

8.3 Higher-order types survey

A natural expansion of this survey would be a survey of
the formalization of higher-order types in ISE. Higher-order
sets are closely associated with the mathematical powerset
object; in standard set theory, powersets (based upon Zer-
melo’s powerset axiom [120]) are typically used to generate
the higher-order sets. One starts with Ur, the set of all ur-
elements—a first-order set. The powerset of this, ℘(Ur), is
a second-order set, with all the first-order sets as members.
One can then iteratively apply the powerset operation to gen-
erate sets of any arbitrary higher order. One area that would
be worth exploration is how powertypes can (ontologically)
ground higher-order types (see Fine [34]).

8.4 Relation between higher-order types and
higher-order logic/language

There is also the vexed relation between higher-order types
and higher-order logic to explore, in particular whether and
how higher-order types require higher-order logic [48]. As
[79] notes, types, including higher-order types, can, and
maybe should, be included in the logical domain. In this case,
first-order logic can handle higher-order types; an example
of this is the standard first-order axiomatizations of set the-
ory, such as ZF. Shapiro [106] expressed this in another
way that the type order of the theory is in the semantics
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not the order of the language, illustrated by first-order lan-
guages that have a higher-order-type semantics. This relation
between type order and logic/language could usefully be
reviewed.

8.5 Relation between meta-modeling and higher-order
types

A further closely related topic is the relation between meta-
modeling and higher-order types (sometimes in this context,
higher-order types are called ontological meta-modeling and
distinguished from linguistic meta-modeling). A survey of
the formalization of this, and relating the issues to historical
discussions, may help to deepen the understanding of the
issues.

8.6 Ways of resolving the “one over many” question

As noted earlier, in the ISE literature, there are a range of
proposals for dealing with the “one over many” question that
become more acute when powertype classification function-
ality is considered. This includes

• Deep instantiation, Atkinson and Kühne [7], Kühne and
Schreiber [64]

• Clabjects, see Kühne and Schreibe [64], Atkinson and
Kühne [8], Gonzalez-Perez and Henderson-Sellers [43]

• Multi-level objects, also known as m-objects, see Neu-
mayr and Schrefl [77,78].

A survey of the formalization of this and relating the issues
to historical discussions on the “one overmany”might help to
deepen the conceptual modeling communities’ understand-
ing of the issues. A particular area worth investigating is how
far the choice of approach rests on genuine concerns relating
to “one over many” or reflects commitments to other founda-
tional assumptions. And making explicit how these various
commitments relate to one another.

9 Conclusions

This survey was conducted to investigate the evolution of
the classification pattern in information systems engineer-
ing. The paper hypothesized that the emergence of computer
systems would lead to the emergence of more sophisticated
and more formalized classification patterns.

The analysis has shown that the communities within ISE
have gradually adopted the formalization of the classifica-
tion pattern. It has identified that the mathematical adopting
communities have adopted the formal structures needed for
classification more readily than the conceptual modeling
communities. Analysis of the texts reveals that one of the

hurdles facing the formalization in the conceptual model-
ing communities is providing an explanation of the formal
structures needed to support classification, particularly the
mathematical object powertype. This is, in part, why they
lag themathematical adopting communities andwhy they are
currently at various different stages of formalization. Com-
munities where there is no real explanatory burden, such as
BORO, are further down the adoption route than those with
more of an explanatory burden. An additional factor is the
lack of sufficient formality in many of the communities.

The survey suggests there may be useful interventions.
Communities can use the mathematical framework and
example to identify where their structures can be enhanced.
The recognition that the adoption of these formal structures
needs to be supported with explanatory content will focus on
its provision. These interventions in turnmay lead to amature
community-wide approach to the classification pattern.
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10 Appendix: Tables of symbols

This paper makes use of a number of mathematical symbols
and introduces a number of Linnaean classification symbols.
To assist the reader, these symbols are listed in this Appendix
in Tables9 and 10.

Table 9 Mathematical symbols

Symbol Name

CO (x, y) Cover-of (x, y)

℘(A) Powerset (A)

PaO (x, y) Partition-of (x, y)

PO (x, y) Powerset-of (x, y)

PSO (x, y) Powerset-subset-of (x, y)

x ∈ y x member-of y

x ⊆ y x subset-of y

* No symbol * Intersection of S

* No symbol * Union of S
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Table 10 Linnaean classification symbols

Symbol Name

An Animals

Br Bruta

C Classes

K Kingdoms

kscs (a, b) kingdoms-super-classes-subset (a, b)

LC Linnaean classifications

LCP Linnaean classifications powerset

LR Linnaean ranks

NT Natural things

NTP Natural things powerset

NTPP Natural things powerset powerset

Or Orders
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